DRAFT May 2017

PPCPs (Pharmaceuticals and Personal Care Products): Ethinylestradiol (Estrogen)

Ethinylestradiol, also known as estrogen, is a steroidal drug that affects the hormones in the human body. Ethinylestradiol is used to supplement or replace the body's natural estrogen. It helps to relieve many of the problems associated with the menopause, such as hot flushes, night sweats and vaginal dryness. The drug is typically prescribed for females (Chrousos 2012).

In April 2016 the ECOTOX database had 300 articles from 1970-2016 that focused of the effects of ethinylestradiol. The most common effects are feminization, gonadal development and sexual development. The most susceptible wildlife to ethinylestradiol are fish and water fleas.

Reported effects of ethinylestradiol from toxicity literature in the ECOTOX database (as of April 2016)

Aquatic Life	Reported Most	Reported Common	Reported Toxicity Value (LOEC, NOEC, EC50, LC50)
	Common effect(s)	study endpoint(s)	
Zebrafish	Feminization,	Sex Changes, Egg	EC50: Zebrafish: 1.04 mg/L (Schiller 2014),
	reduced egg	Production, Behavior,	LOEC (fertility/maturity/fecundity): 1.1 ng/L (1st generation), 2 ng/L
	production,	Reproduction,	(2nd generation)
	aggressive behavior	Gonadal,	NOEC: 0.72 ng/L (Rose 2002),
		Physiological,	96h LC50: 1.7 mg/L (Versonnen 2003)
Medaka	Increased cells in	Fertilization,	LOEC: 0.2 ng/L (Ma 2007),
	liver, endocrine	Absorption,	EC50: Zebrafish: 1.04 mg/L (Schiller 2014),
	effects	Endocrine disruption,	LC50: None reported (Cho 2005),
		reproduction, VTG,	LOEL: 0.0001 ug/L,
		Liver	NOEL: <0.0001 ug/L (Metcalfe 2001)
Crustacean	Effects not visible	survival,	NOEC & LOEC & LC50 (10 d & 21 d): >100 ug/L (Pounds 2002),
	in low	development and	
	concentration, low	reproduction	
	survival		
Water Fleas and	No mortality,	Reproduction,	LOEC, NOEC, LC50: >100 ug/L (Hutchinson 1999),
other related	reduced fecundity,	Endocrine, Hormones	EC50 (mg/L): 0.088 (Andersen 2001)
invertebrates	nonspecific		
	biomarker		
	responses		
Frogs	feminization,	Sexual Development,	LC50 (R. pipens-2 wks): Development: 3.01 uM (stage 26), 4.17(stage
	disrupted sexual	Sex ratio, gonadal	36), Post-Hatch: 2.75 uM / R. slyvatica: 1.89 uM/ (Hogan 2006)
	development, sex		EC50: 7.7 ug/L (Thompsett 2013)
	reversal,		
Other fishes	Lower sperm	Gene expression,	LOEC: 1.0 ng/L (Experiment 1), 7.6 ng/L (Experiment 2) /
	count,	development,	NOEC: 0.21 ng/L (Experiment 1), 1.1 ng/L (Experiment 2) (Thorpe 2003
	feminization,	reproduction,	
	diminished survival	hormones	
Alligator	significant female	Developmental, sex	Significant effects occurred at low dosage (0.1 and 0.3 mg/kg and
	gonadal	determination, hatch	ug/kg)(Matter 1998)
	differentiation at	rate	
	low dosage, low		
	hatching rate		

Chrousos, G.P. (2012) The gonadal hormones and inhibitors in B.G. Katzung, S.B. Masters. A.J. Trevor, 12 Eds. Basic and clinical pharmacology. McGraw Hill. New York, NY, pp. 719